ESSEX FURUKAUA.

MAGNEBOND ${ }^{\circledR}$ CAR-200

Properties

Magnebond ${ }^{(\otimes)}$ CAR-200 has the following characteristics:

- thermal index of $210^{\circ} \mathrm{C}$,
- especially suitable for windings with special thermal resistance,
- excellent chemical resistance, for instance to diesel fuel, resulting in reduced need for encapsulation,
- ability to withstand rotational velocities in excess of $200 \mathrm{~km} / \mathrm{h}$,
- rotor stability at over 38,000 rpm.

Insulation

Magnebond ${ }^{\circledR}$ CAR-200 is polyesterimide (THEIC) enameled copper wire overcoated with polyamide-imide. The final layer is a polyamide aromatic rotor bondcoat.

Application

Magnebond ${ }^{(8)}$ CAR-200 is designed for the production of self-bonded, electromagnetic components, produced without impregnation. Bonding the coil is rapidly achieved in the production line, resulting in increased productivity.
Application:

- motors: fields and armatures,
- many application in the automotive industry, as well as other areas which may experience high levels of chemical contact.

Production range

The standards are:

Diameter:	0.120 to 1.40 mm
Thickness:	Grade 1B or Grade 2B
Color:	Natural

Characteristics

Magnebond ${ }^{(3)}$ CAR-200 fulfills the requirements of the following specifications:
IEC 60317-38
NEMA MW 102

Using conditions

The key conditions to be respected are as following:

- optimum bonding temperature between $190^{\circ} \mathrm{C}$ and $230^{\circ} \mathrm{C}$,
- accurate quantity of energy for the bonding process,

Bonding the coils can be achieved by the joule-effect heating technique. The values for the intensity and voltage to be applied to the ends of a coil, can be determinated as follows:
$70 \mathrm{M}=\mathrm{RI}^{2} \mathrm{t}$
$\mathrm{M}=$ mass of wire in grams
$\mathrm{R}=$ resistance in Ohms
$\mathrm{I}=$ intensity in Amperes
$\mathrm{t}=$ length of time in seconds

ESSEX
FURUKAUA.

MAGNEBOND ${ }^{\circledR}$ CAR-200

MAGNEBOND" CAR-200

Valeurs typiques d'un fil Magnebond ${ }^{\circledR}$ CAR-200 mesurées selon les normes CEI 60851		Typical values for a Magnebond ${ }^{\circledR}$ CAR-200 sample according to IEC 60851 standards	
Diamètre du conducteur Diamètre sur émail Isolation de base Surcouche Couche thermo-adhérente	0,500,561Polyesterimide (THEIC)Polyamide-imidePolyamide aromatic rotor		Conductor Diameter Overall Diameter Basecoat Overcoat Bondcoat
Principales caractéristiques Indice de température (isolation de base)	Magnebond ${ }^{\text {(3) }}$ CAR-200 $210^{\circ} \mathrm{C}$	Thermo-adhérent classique Typical Self-bonding $200^{\circ} \mathrm{C}$	Main characteristics Thermal index (basecoat)
Durée de vie de $5000 \mathrm{hà}$ (isolation de base)	$230^{\circ} \mathrm{C}$	-	5000 h life test (basecoat)
Choc thermique	OK at $240^{\circ} \mathrm{C}$	$240{ }^{\circ} \mathrm{C}$	Heat shock
Thermoplasticité	$340^{\circ} \mathrm{C}$	$340^{\circ} \mathrm{C}$	Cut through temperature
Tension de claquage	$\geq 1,5 \times$ IEC values	IEC values	Breakdown voltage
Flexibilité	10\%+1 diam.	10\%+1 diam.	Flexibility
Allongement	35 \%	35 \%	Elongation
Tangente Delta (isolation de base)	$195{ }^{\circ} \mathrm{C}$	$190^{\circ} \mathrm{C}$	Tangent Delta (basecoat)
Tangente Delta (surcouche)	$140^{\circ} \mathrm{C}$	$130^{\circ} \mathrm{C}$	Tangent Delta (overcoat)
TEST DE RESISTANCE DE COLLAGE	Magnebond ${ }^{\circledR}$ CAR-200	Thermo-adhérent classique Typical Self-bonding	BONDING STRENGTH PERFORMANCE
Résistance de collage à $20^{\circ} \mathrm{C}$ (CEI $60.851-3 \mathrm{Sec} 7.1$)			Bond strength at $20^{\circ} \mathrm{C}$ (IEC 60-851-3 Sec 7.1$)$
$5 \mathrm{~min} 200^{\circ} \mathrm{C}$	1,7 N	2,1 N	$5 \mathrm{~min} 200^{\circ} \mathrm{C}$
$30 \mathrm{~min} 200^{\circ} \mathrm{C}$	3,2 N	$3,1 \mathrm{~N}$	$30 \mathrm{~min} 200^{\circ} \mathrm{C}$
$5 \mathrm{~min} 220^{\circ} \mathrm{C}$	$3,0 \mathrm{~N}$	3,2 N	$5 \mathrm{~min} 220^{\circ} \mathrm{C}$
$30 \mathrm{~min} 220^{\circ} \mathrm{C}$	3,9 N	$3,5 \mathrm{~N}$	$30 \mathrm{~min} 220^{\circ} \mathrm{C}$
Résistance de collage à $155^{\circ} \mathrm{C}$ (CEI $60-851-3 \mathrm{Sec} 7.2$)			Bond strength at $155^{\circ} \mathrm{C}$ (IEC $\left.60-851-3 \mathrm{Sec} 7.2\right)$
30 s. $200^{\circ} \mathrm{C}$	147,3 N	65,3 N	$30 \mathrm{s}. 200^{\circ} \mathrm{C}$
$2,5 \mathrm{~min} 200^{\circ} \mathrm{C}$	$173,0 \mathrm{~N}$	$72,8 \mathrm{~N}$	$2,5 \mathrm{~min} 200^{\circ} \mathrm{C}$
$5 \mathrm{~min} 200^{\circ} \mathrm{C}$	175,8 N	78,2 N	$5 \mathrm{~min} 200^{\circ} \mathrm{C}$
Résistance de ramolissement (CEI 60-851-3 Sec 7.1)			Resoftening Temperature (IEC 60-851-3 Sec 7.1)
$30 \mathrm{~min} 200^{\circ} \mathrm{C}$	$240^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$	$30 \mathrm{~min} 200^{\circ} \mathrm{C}$
$30 \mathrm{~min} 220^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$190^{\circ} \mathrm{C}$	$30 \mathrm{~min} 220^{\circ} \mathrm{C}$
$30 \mathrm{~min} 240^{\circ} \mathrm{C}$	$270^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	$30 \mathrm{~min} 240^{\circ} \mathrm{C}$

These values are for information only.

MAGNEBOND ${ }^{\circledR}$ CAR-200

Bond strength
Test according to IEC 851-3 0,50 mm
\ldots Typical self-bonding wire 30 s 200C
-— Trickle resin $30 \mathrm{~min} .-130 \mathrm{C}$
Magnebond CAR 20030 s 240 C

These values are for information only.

